List	of figures	
2.1	Factors influencing the durability of concrete.	2 - 3
2.2	Factors affecting the abrasion resistance of concrete	2 - 8
2.2(a)	Factors (paste) affecting the abrasion resistance of concrete	2 - 9
2.2(b)	Factors (voids, aggregate, bond) affecting the abrasion resistance of concrete	2 - 10
2.2(c)	Factors (surface treatments, moisture conditioning, surface cracks, fibres, temperature, influence of test method)	2- 11
2.3	Factors affecting the abrasion resistance.	2 – 17
2.4	Factors affecting core abrasion resistance and compressive strength of the core concrete	2 – 18
2.5	Relationship between depth of wear and duration of test, for variations in hardness with depth, as well as severity of abrasion	2 - 19
2.A	Relationship between the average wear depth and compressive strength	2 – 30
2.6	Schematic showing a section through a concrete paving machine.	2 - 56
2.7	Effect on concrete strength of different blends of OPC and GGBS (results of tests done by PCI 1985/86) [Fulton 1986, pg 88].	2 – 68
2.B	Abrasion wear of typical latex-modified mortars	2 – 78
2.8	Compressive strength of concrete dried in laboratory air after preliminary moist curing.	2 – 88
2.9	Relationship between paste/sand proportion and abrasion resistance.	2 - 120
2.10	Family tree of cracks in concrete, showing where cracks related to abrasion wear fit in.	2 – 173
2.11	Temperature distribution in a concrete slab for dense concrete[ISE(1978]	2 – 175
3.0	Comparison of indentation hardness (Vickers method) with Mohs hardness number for ten standard minerals.	3 - 6
3.1	Abrasion resistance (1/volume of wear ate) of various materials plotted against bulk hardness.	3 - 8
3.2	Relation between fracture toughness and resistance to 'hard' abrasive wear for metallic and ceramic materials.	3 – 9
3.3	Model illustrating seven types of surface contact, resulting in either adhesion, deformation or cracking.	3 – 11
3.4	Microscopic presentation of contact between an array of hard and even protuberances pressing down on an idealistically smooth surface, resulting in elastic compression.	3 – 13
3.5	Contact between a hard smooth spherical load pressing down on an idealistically smooth concrete surface.	3 – 14
3.6	The distribution of normal stress (contact pressure) under a sphere loaded elastically against a plane.	3 – 15
3.7	The effect of surface-roughness (as reflected by the plasticity index ψ) on the mode of deformation of asperities (plastic or elastic), for aluminium surfaces.	3 – 17
3.8	Microscopic presentation of contact between a hard smooth steel ball pressing down on an idealistically smooth concrete surface such that a Hertzian cone crack is generated.	3 – 19
3.9	Crack formation in a brittle material due to indentation with a sharp point.	3 – 20
3.10	Fracture model for concrete.	3 – 22
3.11	Failure modes in uniaxial compression.	3 – 23
3.12	Stages of cracking in concrete under compressive load.	3 – 24
3.13	Relationship between axial and lateral strains for uniaxial tension.	3 – 26
3.14	Relationship between axial and lateral strains for triaxial compression	3 – 26

a (=()		
3.15(a)	Stresses on an element subjected to a concentrated load W,	3 – 28
	(rectangular coordinate notation).	
3.15(b)	Vertical stress under center of loaded circular area	3 – 31
3.16	Tension dome effect, where a rubber tyre covers a sand particle. This	3 – 16
	has the effect of magnifying the compression between sand and	
	surface.	
3.17	A lateral force, F, is needed to cause motion by (a) rolling or (b)	3 – 35
	sliding, to overcome the equal and opposite frictional resistance.	
3.18	Series of arc-shaped fractures caused by sliding a sphere over a brittle	3 – 41
	solid under normal load.	-
3.19	Schematic illustration of material removal in a brittle material by the	3 – 42
00	extension of lateral cracks from beneath a plastic groove.	· · · ·
3.20	Traditional concepts of shear and diagonal tension.	3 – 44
3.21	Failure of concrete under combined direct and shear stresses.	3 – 45
3.22	Illustration of Interfacial and Cohesive Wear occurring at an asperity	3 – 46
0.22	contact.	0 10
3.23	Common modes of abrasion wear.	3 – 49
3.24	Stresses on an element beneath the corner of a quadrant having sides	3 – 56
	a and b	
3.25	Hierarchy of the 'mechanisms of abrasion wear' in terms of 'abrasion	3 - 60
	wear'	
4.1	Cross section through a sphere or cylinder rolling over an elastic	4 – 10
	surface, illustrating the origin of Reynolds slip	
4.2	(a) Plan view and (b) section through a sphere rolling over a bearing	4 – 11
	track, to illustrate the origin of Heathcote slip	
4.3	Influence of angle of attack on abrasion wear.	4 – 13
4.4	(a) The abrasive sand is seen to impact against the surface at an	4 – 13 4 – 14
- -	angle θ , causing microscopic crushing and shearing effects of the	
	surface asperities, as seen in (b).	
4.5	Elements that make up the abrasion wear code	4 – 17
4.5	Selected Key Abrasion Tests and Corresponding Abrasion Wear	4 – 17
4.0		4 - 20
F 4	Mechanisms	F 4
5.1	Simple philosophy of abrasion resistance, showing how the various	5 - 4
	factors relate to hardness and aggregate/paste bond.	